
Classification and analysis of human ovarian 
tissue using full field optical coherence 
tomography 

SREYANKAR NANDY,1 MELINDA SANDERS,2 AND QUING ZHU
1,* 

1Department of Biomedical Engineering, Washington University in St. Louis, USA 
2University of Connecticut Health Center, Division of Pathology, USA 
*zhu.q@wustl.edu 

Abstract: In this study, a full field optical coherence tomography (FFOCT) system was used 

to analyze and classify normal and malignant human ovarian tissue. 14 ovarian tissue samples 

(7 normal, 7 malignant) were imaged with the FFOCT system and five features were 

extracted by analyzing the normalized image histogram from 56 FFOCT images, based on the 

differences in the morphology of the normal and malignant tissue samples. A generalized 

linear model (GLM) classifier was trained using 36 images, and sensitivity of 95.3% and 

specificity of 91.1% was obtained. 20 images were used to test the model, and a sensitivity of 

91.6% and specificity of 87.7% was obtained. 
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1. Introduction 

Ovarian cancer is the fifth leading cause of cancer death among women and has the lowest 

survival rate among all the gynecological cancers [1]. This is mainly due to the late stage 

detection (stage III and IV), which in turn can be attributed to the lack of effective early 

screening and diagnostic techniques. Standard preventive procedure for high-risk women 

includes prophylactic oophorectomy (PO) [2]. However, the mortality rate of women 

undergoing premenopausal oophorectomy seems to increase considerably [3]. As a result, it is 

extremely necessary to develop sensitive tools for detection of early stage ovarian cancers. 

Almost 95% of the ovarian cancers occur in the epithelial layer surrounding the ovarian 

tissue. Imaging modalities e.g. photoacoustic tomography (PAT), photoacoustic microscopy 

(PAM), confocal microendoscopy have previously been applied for diagnosis of ovarian 

cancer [4–6], however H&E based histology still remains the gold standard for clinical 

diagnosis. 

Optical coherence tomography (OCT) has proved to be useful for ex vivo and in vivo 

detection of ovarian cancer, mainly because it can detect the microscopic changes in the 

stromal collagen distribution which results in alteration of tissue scattering and elasticity [7–

9]. In general, point detectors or line detectors are required for generating OCT images. 

However, this requires extensive scanning, and is limited by the field of view. Full field 

optical coherence tomography (FFOCT) which is an extension of conventional OCT, can 
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acquire high resolution en face interferometric images with an area detector e.g. a CMOS or 

CCD camera. The axial resolution is determined by the bandwidth of the light source, which 

is generally a very broadband low cost halogen lamp. This can provide a very high axial 

resolution of 1-2 μm, compared to the conventional SLD based sources [10,11]. The 

transverse resolution of the system can be controlled by the numerical aperture of the 

microscope objectives and the source wavelength. FFOCT provides greater contrast and depth 

of penetration compared to confocal microscopy [12]. FFOCT has been used for diagnosis of 

fixed and non-fixed tissue samples for the detection of breast, lung and skin and ovarian 

tissues [13–16]. 

Morphological heterogeneity of tumor tissue has recently emerged as an important 

diagnostic parameter [17, 18]. Morphological analysis, which involves detecting changes in 

the gray level intensity of a medical image, has been successfully used for differentiating 

between normal and malignant pathologies using several imaging modalities, such as 

Ultrasound, MRI and Spatial frequency domain imaging [19–21]. Several approaches of 

texture analysis have been demonstrated. These include statistical methods such as histogram 

analysis, mathematical model based approach including fractal analysis as well as transform 

based methods including Wavelet, Fourier and Gabor transform [22–24]. Conventional OCT 

has also been applied for texture analysis of tissues [25,26]. However, the resolution of all the 

imaging modalities explored is difficult to compare with high resolution H&E stained images. 

Histology, which can provide microscopic tissue information with high degree of accuracy, is 

currently limited by staining methods and long staining time. FFOCT on the other hand can 

provide rapid high resolution, label-free images of tissue with comparable accuracy. So far, 

most of the studies on FFOCT have relied on visual observation of normal and malignant 

structures. This limits the interpretation across different observers, and may affect the 

ultimate diagnosis. Automated image analysis methods can provide a robust and accurate 

diagnosis independent of visual interpretation limitations. In this paper, we have explored the 

feasibility of using a FFOCT system for imaging and analysis of human ovarian tissue 

samples. Five features were quantitatively extracted from normalized histogram of the normal 

and malignant FFOCT images. These were the mean, standard deviation, skewness, kurtosis 

and entropy. The sensitivity, specificity as well as the area under the receiver operating 

characteristic (ROC) curve (AUC) was evaluated for diagnostic accuracy. To the best of our 

knowledge, this is the first ever study to report the quantitative morphological analysis and 

feature extraction using FFOCT for classification of normal and malignant human ovarian 

tissue. Quantitative information from FFOCT images can be invaluable for high resolution, 

label free, rapid ex vivo diagnosis of neoplastic changes related to ovarian cancer. 

2. Materials and methods 

2.1 Ovary sample 

De-identified formalin fixed paraffin embedded (FFPE) tissue blocks of human ovarian tissue 

samples were acquired from University of Massachusetts (UMass) Memorial Cancer Center 

and University of Connecticut Health Center (UCHC). After imaging, the slides 

corresponding to the imaged planes were identified, and stained using hematoxylin and eosin 

(H&E) for diagnosis. 

2.2 FFOCT system 

Figure 1(a) shows the configuration of the FFOCT system, which is based on a Linnik 

interferometer consisting of two objective lenses (10X, N.A. 0.25), one each in the reference 

and sample arm. A 6 V, 20 W halogen lamp (central wavelength 560 nm, bandwidth 200 nm) 

customized with Köhler illumination was used to illuminate the sample. The reference mirror 

was connected to a piezo stage (Thorlabs, NF5DP20) and the samples were placed on a 3D 

stage. The en face interferometric images were captured by a 12 bit CCD camera (Basler 
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acA1300-30um, 1296 x 966 pixels, 30 fps). The axial resolution of the system was measured 

from the FWHM of the axial PSF to be 1.6 µm as shown in Fig. 1(b). The lateral resolution 

was measured by calculating the PSF from the derivative of the edge spread function (ESF) of 

a sharp blade and was around 3.9 µm, shown in Fig. 1(c). 

(b)(a) (c)

 

Fig. 1. (a) FFOCT setup; (b) Axial resolution; (c) Lateral resolution 

2.3 FFOCT imaging procedure 

FFPE ovarian tissue blocks were placed on a 3D stage and four phase shifted en face images 

were acquired with the CCD camera, from which the OCT image was computed. The field of 

view was 0.8 cm x 0.8 cm. The depth of penetration was around 100 μm. Overall acquisition 

time for each location was 0.3 seconds. The OCT images were then compared with the H&E 

slides by our pathologist for identification of benign and malignant ovarian tissue features. 

2.4 Feature extraction 

Each image (0.8 cm x 0.8 cm) was further divided into several non-overlapping sub-images 

(0.15 cm x 0.15 cm), based on the pathologist’s observation of normal and malignant 

structures. Five features were extracted quantitatively using MATLAB from the analysis of 

the normalized histogram of these normal and malignant FFOCT ovary images. If x is the i
th

 

pixel gray level and N is the total number of pixels, then the five features can be computed 

from Eqs. (1) to (5). 
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Mean was used to measure the average pixel intensity. The deviation of the histogram 

distribution was calculated from the variance. Kurtosis and skewness signified the flatness 

and asymmetry of the image histogram. Entropy was used to signify the irregularity of the 

image. It was assumed that identification of one image from a sample as cancer was sufficient 

to classify the ovary as malignant, and only if every image from a sample was found to be 

normal then the ovary was considered normal [27]. In general, lower mean value of an image 

combined with higher values of variance, entropy, skewness and kurtosis signified increased 

heterogeneity of the image, which can be associated with development and progression of 

cancer. A logistic regression model was used to classify the normal and malignant ovarian 

tissue groups. The five features extracted from FFOCT images were used as predictor 

variables, and response variable was the actual diagnostic results (1 representing malignant 
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and 0 representing normal). The coefficients of the linear model were determined by 

MATLAB GLMFIT function and then the same set of coefficients were applied to MATLAB 

GLMVAL function to calculate the responses of the testing set. The quality of the model was 

evaluated using ROC curve and AUC. 

3. Results and discussions 

A total of 14 ovarian tissue samples were imaged ex vivo with the FFOCT system, consisting 

of 7 benign and 7 malignant samples. The malignant tissue samples consisted of 4 cases of 

serous carcinoma, 2 cases of mucinous carcinoma and 1 endometroid carcinoma. Figure 2 

shows the FFOCT images of a normal and malignant ovarian tissue (serous carcinoma) along 

with the corresponding H&E stained histology images. It can be observed from the FFOCT 

and histology images that normal ovarian tissue has visibly smoother and homogeneous 

stroma with dense collagen distribution, while the malignant ovary has highly degenerated, 

fragmented and heterogeneous stroma, characterized by poorly differentiated and clustered 

tumor architecture. 

 

Fig. 2. FFOCT images of (a) normal and (b) malignant ovary; corresponding histology images 

are shown in (c,d). The matching areas are indicated by red arrows. 

Five features were extracted from normalized histogram of 56 non-overlapping FFOCT 

images (28 normal and 28 malignant). Figure 3 shows the boxplot and p values of the features 

normalized mean, variance, kurtosis, skewness and entropy. It can be observed from Fig. 3 

that the malignant tissue group has lower mean intensity value compared to the normal group, 

which may be attributed to aggravated necrosis and reduced collagen concentration. 

Additionally, the variance, kurtosis, skewness and entropy of the malignant group were 

significantly higher, signifying more heterogeneity and clustering associated with 

development of cancer. 

For classification between normal and malignant ovarian tissue groups, the images were 

separated into two groups, 36 images were used for training (18 normal, 18 malignant) the 

logistic classifier and 20 images (10 normal, 10 malignant) were tested using the logistic 

regression model. Figure 4 shows the ROC curves for both the training and testing sets. For 

the training set, a sensitivity and specificity of 95.3% and 91.1% was obtained, with average 

AUC at 95% confidence interval being 0.93, while for the testing set, we obtained a 

sensitivity of 91.6% and specificity of 87.7%, with average AUC of 0.89 at 95% confidence 

interval. 

The current work has several limitations. The training and testing results are based on a 

limited sample pool, and more data needs to be acquired for further validation. Additionally, 
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only FFPE tissue blocks were used for this preliminary study. Although, some previous 

spectroscopic imaging studies have indicated that classification of fresh and FFPE tissues 

produce comparable results [28], however, further compatibility studies need to be conducted 

between these two tissue groups. Menopausal status of the patients, which was not available 

for the samples studied, also needs to be considered for more accurate analysis. Also, a lower 

NA objective lens was used, and much higher cellular level transverse resolution can be 

obtained by using high NA objective lenses, as shown by other FFOCT studies. The current 

study is intended to be implemented as a rapid ex vivo alternative for conventional H&E 

based histology, which requires staining and long diagnostic waiting time. The intended use is 

taking a biopsy sample and performing rapid optical diagnosis of normal and malignant 

tissues based on FFOCT images, which are comparable in resolution to standard histology 

methods and do not require staining. Future work will include studying freshly excised tissue 

samples and incorporating the data processing and feature extraction methods in real time, so 

that the technology can be translated from bench to bedside. 

(a) (b) (c)

(d) (e)

 

Fig. 3. Boxplot of the five features with p values for (a) mean, (b) variance, (c) skewness, (d) 
kurtosis and (e) entropy. 

(a) (b)

 

Fig. 4. ROC curve for training and testing using the five features. 

4. Summary 

In this study, 14 human ovarian tissue samples were imaged ex vivo using the FFOCT system, 

and five quantitative features were extracted from the normal and malignant ovarian tissue 

images. Using a logistic classifier model, a sensitivity of 91.6% and specificity of 87.7% was 

achieved. The initial promising results indicate that FFOCT can potentially be a very useful 

ex vivo diagnostic tool for label free, rapid and low cost quantitative analysis of ovarian 

tissue, and reduce the waiting time associated with the conventional histology. 
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